Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells

Y Wei, R Chen, S Dimicoli, C Bueso-Ramos… - Leukemia, 2013 - nature.com
Y Wei, R Chen, S Dimicoli, C Bueso-Ramos, D Neuberg, S Pierce, H Wang, H Yang, Y Jia…
Leukemia, 2013nature.com
The molecular bases of myelodysplastic syndromes (MDS) are not fully understood.
Trimethylated histone 3 lysine 4 (H3K4me3) is present in promoters of actively transcribed
genes and has been shown to be involved in hematopoietic differentiation. We performed a
genome-wide H3K4me3 CHIP-Seq (chromatin immunoprecipitation coupled with whole
genome sequencing) analysis of primary MDS bone marrow (BM) CD34+ cells. This
resulted in the identification of 36 genes marked by distinct higher levels of promoter …
Abstract
The molecular bases of myelodysplastic syndromes (MDS) are not fully understood. Trimethylated histone 3 lysine 4 (H3K4me3) is present in promoters of actively transcribed genes and has been shown to be involved in hematopoietic differentiation. We performed a genome-wide H3K4me3 CHIP-Seq (chromatin immunoprecipitation coupled with whole genome sequencing) analysis of primary MDS bone marrow (BM) CD34+ cells. This resulted in the identification of 36 genes marked by distinct higher levels of promoter H3K4me3 in MDS. A majority of these genes are involved in nuclear factor (NF)-κB activation and innate immunity signaling. We then analyzed expression of histone demethylases and observed significant overexpression of the JmjC-domain histone demethylase JMJD3 (KDM6b) in MDS CD34+ cells. Furthermore, we demonstrate that JMJD3 has a positive effect on transcription of multiple CHIP-Seq identified genes involved in NF-κB activation. Inhibition of JMJD3 using shRNA in primary BM MDS CD34+ cells resulted in an increased number of erythroid colonies in samples isolated from patients with lower-risk MDS. Taken together, these data indicate the deregulation of H3K4me3 and associated abnormal activation of innate immunity signals have a role in the pathogenesis of MDS and that targeting these signals may have potential therapeutic value in MDS.
nature.com