Death is the major fate of medial edge epithelial cells and the cause of basal lamina degradation during palatogenesis

R Cuervo, L Covarrubias - 2004 - journals.biologists.com
2004journals.biologists.com
During mammalian development, a pair of shelves fuses to form the secondary palate, a
process that requires the adhesion of the medial edge epithelial tissue (MEE) of each shelf
and the degeneration of the resulting medial epithelial seam (MES). It has been reported
that epithelialmesenchymal transformation (EMT) occurs during shelf fusion and is
considered a fundamental process for MES degeneration. We recently found that cell death
is a necessary process for shelf fusion. These findings uncovered the relevance of cell death …
During mammalian development, a pair of shelves fuses to form the secondary palate, a process that requires the adhesion of the medial edge epithelial tissue (MEE) of each shelf and the degeneration of the resulting medial epithelial seam (MES). It has been reported that epithelialmesenchymal transformation (EMT) occurs during shelf fusion and is considered a fundamental process for MES degeneration. We recently found that cell death is a necessary process for shelf fusion. These findings uncovered the relevance of cell death in MES degeneration; however, they do not discard the participation of other processes. In the present work, we focus on the evaluation of the processes that could contribute to palate shelf fusion. We tested EMT by traditional labeling of MEE cells with a dye, by infection of MEE with an adenovirus carrying the lacZ gene, and by fusing wild-type shelves with the ones from EGFP-expressing mouse embryos. Fate of MEE labeled cells was followed by culturing whole palates, or by a novel slice culture system that allows individual cells to be followed during the fusion process. Very few labeled cells were found in the mesenchyme compartment, and almost all were undergoing cell death. Inhibition of metalloproteinases prevented basal lamina degradation without affecting MES degeneration and MEE cell death. Remarkably, independently of shelf fusion,activation of cell death promoted the degradation of the basal lamina underlying the MEE (`cataptosis'). Finally, by specific labeling of periderm cells (i.e. the superficial cells that cover the basal epithelium), we observed that epithelial triangles at oral and nasal ends of the epithelial seam do not appear to result from MEE cell migration but rather from periderm cell migration. Inhibition of migration or removal of these periderm cells suggests that they have a transient function controlling MEE cell adhesion and survival, and ultimately die within the epithelial triangles. We conclude that MES degeneration occurs almost uniquely by cell death, and for the first time we show that this process can activate basal lamina degradation during a developmental process.
journals.biologists.com