Supplemental Figures Legend

Supplemental Figure 1

p47^{phox-/-} mice fail to develop vaccine-induced resistance to inactivated *A. fumigatus* conidia. Mice (6/group) received inactivated *A. fumigatus* conidia intranasally 14 days before re-infection with *Aspergillus* conidia intranasally. Mice were given cyclophosphamide a day before re-infection. Resistance to re-infection was assessed in terms of (**A**) fungal growth ($log_{10}CFU \pm SEM$), (**B**) lung histology (PAS staining) and (**C**) cytokine production (ELISA) by purified lung T cells cultured in vitro with conidia-pulsed dendritic cells from the corresponding mouse strain. In **B**, numbers refer to % polymorphonuclear (PMN) or mononuclear (MNC) cells in the BAL. Assays were done at 3 days post-infection. Data are pooled or representative (histology) from 2 independent experiments.*, P<0.05; **, P<0.01; ***, P<0.001, vaccinated *vs* unvaccinated (None) mice.

Supplemental Figure 2

Pep1p-coated microparticles induce robust CD8⁺T cell activation. Mice (6/group) received 5µg Pep1p+50 µg microparticles, or microparticles alone, administered 14, 7 and 3 days before the infection with live *Aspergillus* conidia intranasally. FACS analysis showed that more than 90% of microparticles were fluorescent either immediately or 24 h after coupling with Alexa Fluor 488-conjugated Pep1p conjugation, thus showing a saturated and stable attachment of Pep1p to the microparticles. Resistance to re-infection was assessed in terms of (**A**, **B**) fungal growth ($log_{10}CFU \pm SEM$), (**C**) lung histology (PAS staining) and (**D**) proliferation of CD4⁺ or CD8⁺T cells purified from lungs or Pep1p+microparticles-vaccinated mice and restimulated in vitro with Pep1p- or Pep1p+microparticles-pulsed naive DCs for 72 h. DNA synthesis was measured by ³H-thymidine uptake (cpm, counts per minute).*, P<0.05; **, P<0.01; ***, P<0.001, vaccinated *vs* unvaccinated (None) or treated vs untreated (None) mice. Data are pooled or representative (histology) from 2 independent experiments. Concomitant administration of CPG did not modify the vaccinating potential of Pep1p+microparticles (data not shown).

Supplemental Figure 3

Failure of CpG alone to confer vaccine-induced resistance. $p47^{phox-/-}$ mice were treated with CpG alone (**A**, **B**) or with CpG plus the fungal aspartic protease (Pep1p) (**C**, **D**) and assessed for resistance to reinfection 14 (**A** and **B**) or 60 (**C** and **D**) days later in terms of (**A**, **D**) fungal growth in the lung (log₁₀CFU ± SEM, assessed 3 days after re-infection); (**B**) lung histology (PAS staining and Gomori staining in the insets) and (**C**) survival (%). Mice were given cyclophosphamide a day before re-infection. Data are pooled from 2 independent experiments. ***, P<0.001, CpG-treated vs untreated (None) mice (**A**) and Pep1p+CpG-vaccinated *vs* unvaccinated (None) mice. Data are representative of two experiments.

Supplemental Figure 4

 $p47^{phox-/-}$ mice develop vaccine-induce resistance to recombinant fungal antigens. $p47^{phox-/-}$ mice were given the 1,3-beta glucanosyltransferase (Gel1p), the purified cell wall glucanase (Crf1p) and the metalloprotease (Mep1p) together with CpG 14, 7 and 3 days before re-infection with *Aspergillus* conidia intranasally. Three days later, mice were assessed for resistance to re-infection in terms of (A) survival (%); (B) fungal growth (log₁₀CFU ± SEM) and (C) lung histology (PAS staining and Gomori staining in the

insets). In C, numbers refer to % polymorphonuclear (PMN) or mononuclear (MNC) cells in the BAL at 3 days after re-infection. Data are pooled or representative (histology) from 3 independent experiments. ***, P<0.001, vaccinated *vs* unvaccinated (None) mice.

Supplemental Figure 5

Vaccine-induced resistance to *A. fumigatus* is mediated by Th1 and, partly, Th17 cells. $ll17ra^{-/-}$ or $lfng^{-/-}$ mice were administered with *A. fumigatus* conidia or the protective recombinant fungal aspartic protease (Pep1p) with CpG as in legend to figure 1, and assessed for resistance to re-infection in terms of (**A**) survival (%); (**B**) fungal growth (log₁₀CFU ± SEM) and (**C**) pattern of cytokine gene expression by RT-PCR on RNA from total lung cells. (**D**) Conidiocidal activity [percentage of colony forming unit inhibition (mean ± SEM)] and (**E**) expression of mBD1 and cathelicidin mRNA by RT-PCR in vaccinated mice. RT-PCR and the conidiocidal assays were done on total lung cells. Data are pooled from 2 independent experiments. *, P<0.05; **, P<0.01; ***, P<0.001, vaccinated *vs* unvaccinated (None) mice and $p47^{phox-/-}$ vs C57BL6 mice (**D**, **E**).

Supplemental Figure 6

CD8^{-/-} and **CD4**^{-/-} mice fail to develop vaccine-induced resistance to *Aspergillus fumigatus* conidia or **Pep1p antigen.** Mice received *A. fumigatus* conidia 14 days before or Pep1p with CpG 14, 7 and 3 days before re-infection with *Aspergillus* conidia. Mice were assessed for resistance to re-infection in terms of (**A**) fungal growth (log_{10} CFU ± SEM) and (**B**) lung histology (PAS staining) 3 days after re-infection. Data are pooled or representative (histology) from 3 independent experiments. None, unvaccinated mice.

Supplemental Figure 7

p47^{phox-/-} mice are not more susceptible than C57BL/6 mice to murine Cytomegalovirus infection. Mice were infected intraperitoneally with 5×10^5 plaque-forming units (PFU) of the Smith strain MCMV and were assessed for: (**A**) virus titer, expressed as log_{10} PFU/gram of lung ± SEM, at 7 days after infection; (**B**) lung histology (Hematoxylin- and Eosin-staining); (**C**) frequency of IFN- - and granzyme B(GrzB)-producing and (**D**) cytotoxic activity of CD8⁺T cells. T-cell cytolytic activity was assessed by standard ⁵¹Cr-release assay against dendritic cells using different Effector:Target (E:T) cell ratios. The frequency of IFN- - or GrzB-producing cells was determined by ELISPOT assay on CD8⁺T cells purified from spleens. Results are expressed as the number of cytokine-producing cells (mean ± SEM) per 10⁵ cells, calculated using replicates of serial 2-fold dilutions of cells. Data are pooled or representative (histology) from 2 independent experiments. *, P<0.05; **, P<0.01; ***, P<0.001, infected *vs* uninfected mice.

Supplemental Figure 8

TLR3 expression and responsiveness in $p47^{phox-/-}$ **mice.** C57BL/6 or $p47^{phox-/-}$ mice were infected intranasally with live *A. fumigatus* conidia (6-8 mice/group). Relative expression of *Tlr3*, *Ifnb* and *Ifna* in the lungs of infected mice were assessed at 1 and 7 days post-infection by RT-PCR. 0, uninfected mice. Data are representative from 3 independent experiments.*, P<0.05; **, P<0.01; ***, P<0.001, $p47^{phox-/-}$ vs C57BL/6 mice.

Supplemental Figure 9

The intracellular routing of the *Aspergillus* metalloprotease Mep1p antigen in dendritic cells.

Immunofluorescence imaging of purified dendritic cells from lungs of C7BL/6 mice after in vitro exposure to the Mep1p-Alexa Fluor 488 at 37°C for 2 h and chased for 15 and 45 min. Formaldehyde-fixed DCs were incubated with primary antibodies against Mannose Receptor (MR), Rab5, Rab7, Rab9, Rab14 and Lamp1 followed by secondary anti-rabbit IgG TRITC antibody. Nuclei were counterstained with DAPI. Images were acquired using a fluorescence microscope (BX51 Olympus) with a 100 × objective and the analySIS image processing software (Olympus). Shown are merging images of DCs (a single cell is magnified in the inset) pulsed with GFP-conidia or fungal antigens (green) and red-stained for each endosomal compartment. Shown are representative data from 2 independent experiments. Numbers refer to co-localization coefficients to quantify the degree of overlap.

Supplemental Figure 10

Flow cytometry of lung dendritic cells in C57BL6 or $p47^{phox-/-}$ mice. Numbers refer to % positive cells on T and B cell-depleted lung cells from uninfected mice. The data show that cross-presenting CD11b^{low}CD103⁺DCs or CD8 α^+ DCs and tolerogenic B220⁺ or Siglec H⁺ DCs were not defective in the lungs of CGD mice. Data are representative of one experiment out of three.

Supplemental Figure 11

Flow cytometry of lung CD8⁺T cells upon treatment with anti-CD8 or anti-MHC Class I antibody. Mice (6/group) received *A. fumigatus* conidia intranasally and concomitantly treated with 300 µg of anti-CD8, 34-5-8S (reacting with the H-2Dd MHC class I alloantigen and cross-reacting with cells from mice of the H-2Db haplotype) or 28-14-8 (reacting with the H-2Db MHC class I alloantigen). Untreated mice received isotype control mAb. The numbers refer to % positive cells by FACS analysis of total lung cells at different days post-infection. Data are representative of one experiment out of two.

Alexa Fluor 488-labeled-Mep1p

Supplemental Table 1. Co-localization coefficients

	15 min			45 min				
	MR	MR Rab5 Rab14		Rab7 Rab9 Lamp1		Rab14		
							3-MA	Chloroquine
C57BL/6 GFP - <i>Aspergillus</i> conidia								
Pearson's coefficient	0.551	0.304	0.275	0.325	0.491	0.638	0.055	0.366
Overlap coefficient	0.671	0.407	0.354	0.385	0.542	0.758	0.059	0.392
Manders' coefficient Primary antibodies /GFP - Aspergillus conidia	0.622	0.304	0.22	0.327	0.579	0.884	0.004	0.187
Manders' coefficient GFP - Aspergillus conidia/Primary antibodies	0.976	0.999	0.967	1.0	0.99	1.0	1.0	1.0
Alexa Fluor 488-labeled-Pep1p								
Pearson's coefficient	0.75	0.68	0.134	0.309	0.245	0.802	0.114	0.193
Overlap coefficient	0.771	0.686	0.141	0.318	0.245	0.85	0.11	0.189
Manders' coefficient Primary antibodies /Alexa Fluor 488-labeled-Pep1p	0.805	0.597	0.13	0.12	0.051	0.942	0.005	0.029
Manders' coefficient Alexa Fluor 488-labeled-Pep1p /Primary antibodies	1.0	1.0	1.0	1.0	1.0	0.991	1.0	1.0
p47 ^{phox_/_} GFP - Aspergillus conidia								
Pearson's coefficient	0.332	0.426	0.012	0.48	0.263	0.545	0.057	0.095
Overlap coefficient	0.478	0.588	0.014	0.555	0.466	0.695	0.056	0.104
Manders' coefficient Primary antibodies /GFP - Aspergillus conidia	0.504	0.705	0.0	0.463	0.349	0.989	0.002	0.017
Manders' coefficient GFP - Aspergillus conidia/Primary antibodies	1.0	0.999	1.0	1.0	0.999	0.98	1.0	1.0
Alexa Fluor 488-labeled-Pep1p								
Pearson's coefficient	0.823	0.595	0.253	0.547	0.591	0.786	0.184	0.556
Overlap coefficient	0.872	0.603	0.249	0.553	0.611	0.808	0.205	0.562
Manders' coefficient Primary antibodies /Alexa Fluor 488-labeled-Pep1p	0.997	0.376	0.057	0.269	0.649	0.742	0.076	0.27
Manders' coefficient Alexa Fluor 488-labeled-Pep1p /Primary antibodies	0.916	1.0	1.0	1.0	1.0	1.0	1.0	1.0

The co-localization program Fiji with the JACoP Plugin was used to quantify the degree of overlap by calculating the co-localization coefficients (Pearson's correlation coefficient, Overlap coefficient according to Manders and the Overlap coefficients). The numbers in red denote the most important differences.